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Abstract
We study quantum systems whose scattering modes are governed by unitary
representation of the sl(2, C) algebra. The S-matrices of the systems under
consideration are defined from intertwining relations for the Weyl equivalent
representations of the group SL(2, C) or its Lie algebra.

PACS numbers: 02.20.Sv, 03.65.Nk, 45.20.Jj

1. Introduction

The dynamical role of Lorentz group SO(3, 1) ≈ SL(2, C) is familiar since the seminal work
of Fock [1] addressing the solution of the Coulomb problem. Following that, Bargmann [2]
recognized that the angular momentum and Runge–Lenz vectors generate the Lie algebra
of SO(3, 1) in the subspace of positive energies. It was realized that the Hamiltonian H
belongs to the centre of the enveloping algebra of SO(3, 1), i.e., H is a function of the Casimir
operator C of SO(3, 1). Namely, H ∼ 1/(C − 1).

From this point of view the Coulomb scattering problem has been studied by many authors
[3–6]. It was first shown by Zwanziger [5] that the algebra of SO(3, 1) may be used to calculate
the Coulomb phase shift. However, his method still made use of coordinate realization for
the generators. Wu et al [6] building on the works [7–9] have suggested a purely algebraic
method for the calculation of the Coulomb S-matrix.

As usual, in this reference the scattering operator is defined in terms of asymptotic states

�out = S ′�in.

Here �in and �out are incoming and outgoing asymptotic states which are assumed to satisfy
the free Schrödinger equation

H 0�α = E�α.

These states are described by the Euclidean group E(3) in three dimensions. It is therefore
mandatory to find an interrelation between dynamical algebra, which describes actual states,
and the Euclidean algebra, which describes the freely evolving states. However, due to the
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absence of a general procedure for the description of such connection formulae, it is rather
difficult to derive the S-matrix for problems with higher-rank groups.

A treatment of the scattering problem based on a different approach was given in [10].
It has been argued that the scattering operator S for models whose Hamiltonians belong to
the centre of the enveloping algebra of some non-compact group G is constrained to satisfy

SU(g) = Ũ (g)S for all g ∈ G (1)

or

S dU(a) = dŨ (a)S for all a ∈ g (2)

where U and Ũ are the Weyl equivalent representations of G, while dU and dŨ are the
corresponding representations of the algebra g of G. (The representations U and Ũ have the
same Casimir eigenvalues. Such representations are called Weyl equivalent.)

It should be emphasized that the scattering operator S in equations (1) and (2) is the
so-called modified scattering operator [8], i.e.,

�(+)
α = S�(−)

α (3)

where �(+)
α and �(−)

α are the actual states satisfying the time-independent Schrödinger equation

H�(±)
α = E�(±)

α .

In other words we use the scattering operator S defined in terms of actual states rather than the
scattering operator S ′ defined in terms of asymptotic states. For systems under consideration,
it is more appropriate to use S because its matrix elements are evaluated with respect to actual
states

Sβα = (
�

(+)
β , S�(+)

α

) = (
�

(−)
β , S�(−)

α

) = (�β, S ′�α). (4)

The principal difference between S and S ′ can be easily seen from the representations

S = �(+)�(−)†, S ′ = �(−)†�(+) (5)

where �(+) and �(−) are the Møller operators mapping the whole Hilbert space H onto the
subspace Hc of scattering states

�(±)
α = �(±)�α. (6)

This means that S is defined and unitary in Hc, while S ′ is defined and unitary in the whole H.
Moreover

[S,H ] = 0, [S ′,H 0] = 0.

Thus, one can in principle evaluate the S-matrix (more precisely, the submatrices belonging
to the definite value of energy) from (1) or (2) without ever writing the wavefunction, or the
relation between the actual states and the asymptotic one, or the interrelation between the
original algebra g and the ‘free’ algebra, or ever mentioning the concepts of space and time.

At this stage we note that operator A is said to intertwine the representations U and Ũ of
the group G if the relation AU(g) = Ũ (g)A holds [12]. It turns out that [10, 13–17] if the
scattering system is governed by a Hamiltonian describable as

H = f (C)|H (7)

or

Q(H − E) = (C − q)|H (8)

the scattering operator for such a system is also related to the intertwining operator, but now

S = A|H (9)
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where H is a subspace occurring in the subgroup reductions, q is an eigenvalue of C and Q is
some nontrivial operator.

This paper is the first of two devoted to the study of scattering problems related to SL(2, C)

by the algebraic method proposed in [10]. It is the purpose of this work to re-examine and
re-derive all three-dimensional scattering problems [1, 18, 19, 21] known to possess the
Lorentz group as a dynamical group. In this discussion we shall restrict ourselves to the non-
relativistic Coulomb scattering with and without spin, and the dyon–dyon scattering, although
the case of Bogomolny–Prasad–Sommerfeld monopole scattering [20, 21] can also be easily
treated. It is shown that the scattering amplitude for all these problems can be derived from
equation (B34). The phase of the amplitude, which shows up in interference phenomena, has
been given explicitly. Our other purpose here is to prepare all the necessary background for
the second paper in the series, devoted to two-dimensional and one-dimensional problems.

2. The Coulomb problem

The hydrogen atom was one of the first quantum systems with which the importance of the
algebraic approach was realized. The model was investigated in various aspects in both
the Heisenberg and the Schrödinger formulation of quantum mechanics and the ‘accidental’
degeneracy was understood naturally in terms of the underlying Lie algebraic structure.

Let us start the discussion with the fact that for the Coulomb system, governed by the
Hamiltonian

H = p2

2M
+

α

r
(10)

the angular momentum L and the Runge–Lenz vector A, which are given by

L = r × p, A = 1

2M
(p × L − L × p) + αr̂ (11)

are conserved

[L,H ] = 0, [A,H ] = 0 (12)

where, M is the (reduced) mass, r̂ = r/r and α denotes the strength of the potential, which
for the hydrogen atom is equal to −e2. From now on we will use the system of units in which
M = h̄ = 1. The components of L and A have the following commutation relations:

[Li, Lj ] = iεijkLk, [Li,Aj ] = iεijkAk, [Ai,Aj ] = −iεijkLk(2H). (13)

Moreover the following relations hold:

L · A = 0, A2 = 2H(L2 + 1) + α2. (14)

Due to (12), we may restrict algebra (13) to the subspace where H has a definite value and
write

K = A(2H)−1/2 (15)

since we are concerned only with the positive spectrum of H, i.e., H = p2/2, p > 0. In this
way, we obtain the Lie algebra of the Lorentz group SO(3, 1) ∼ SL(2, C) spanned by the six
(Hermitian) operators Li,Ki . Then, the S-matrix for the Coulomb problem can be defined
from equation (1) or (2). To this end, a few facts from representation theory of the group
SL(2, C) are useful [22].

The Lie algebra of SL(2, C) is spanned by the six elements Ji, Ni, i = 1, 2, 3, obeying
the following commutation relations:

[Ji, Jj ] = iεijkJk, [Ji, Nj ] = iεijkNk, [Ni,Nj ] = −iεijkJk. (16)
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The Ji span the Lie algebra of SU(2) ∼ SO(3). The unitary irreducible representations
(UIRs) of SL(2, C) are known to form two series: principal and complementary. It is also
known that only the principal series of the UIRs of SL(2, C) describe the scattering states.
Consequently, the relevant unitary representations will be the principal series.

The principal series of SL(2, C) are characterized by the pair χ = (ρ, ν), where ν = 0,

± 1
2 ,±1, . . . , while −∞ < ρ < ∞. The representations specified by labels χ = (ρ, ν) and

χ̃ = (ρ ′, ν ′) are Weyl equivalent if and only if ρ ′ = −ρ and ν ′ = −ν. In every UIR of
principal series of SL(2, C) the Casimir invariants C1 and C2

C1 = J2 − N2, C2 = J · N (17)

become equal to a multiple of the identity operator

C1 = −ν2 − ρ2 − 1, C2 = νρ. (18)

The operators J2 and J3 may be diagonalized simultaneously with C1 and C2. Thus we may
introduce a basis in the following way:

J2|ρν; jm〉 = j (j + 1)|ρν; jm〉, J3|ρν; jm〉 = m|ρν; jm〉 (19)

where

j = |ν|, |ν| + 1, |ν| + 2, . . . , m = j, j − 1, . . . ,−j.

Once the algebra has been established we may consider realizations of the generators
Li,Ki different from those given above. We note that equation (14) restricts us to the most
degenerate principal series representations with

ρ = α/p, ν = 0. (20)

These representations can be realized in the Hilbert space spanned by the eigenvectors |lm〉
of L2 and L3. The operators Li,Ki are then defined by (see appendix A)

L3|lm〉 = m|lm〉
L±|lm〉 = [(l ∓ m)(l ± m + 1)]

1
2 |l, m ± 1〉

K3|lm〉 = i(−1 + iρ − l)al+1,m|l + 1,m〉 + i(iρ + l)al,m|l − 1,m〉
K±|lm〉 = ±i(1 − iρ + l)bl+1,±m+1|l + 1,m ± 1〉 ± i(iρ + l)bl,∓m|l − 1,m ± 1〉

where L± = L1 ± iL2,K± = K1 ± iK2, |lm〉 ≡ |ρ0; lm〉 and

al,m =
√

(l + m)(l − m)

(2l + 1)(2l − 1)
, bl,m =

√
(l + m)(l + m − 1)

(2l + 1)(2l − 1)
. (21)

We are now prepared to compute the S-matrix. To do this let us write equation (2) for
generators L3, L± and K3

SL3 = L̃3S (22)

SL± = L̃±S (23)

SK3 = K̃3S. (24)

Applying both sides of equations (22) and (23) to the basis vector |lm〉 we find that the S-matrix
in the angular-momentum representation is diagonal and its matrix elements are independent
of m, i.e.,

S|lm〉 = Sl|lm〉. (25)
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The value of its diagonal elements can be defined by the use of (24). As a result we obtain
the recurrence relation

(1 − iρ + l)Sl+1 = (1 + iρ + l)Sl, (−iρ + l)Sl = (iρ + l)Sl−1 (26)

which implies that

Sl = 

�(1 + iρ + l)

�(1 − iρ + l)
(27)

where 
 is a phase factor. (Since S is unitary, each of its eigenvalues has modulus 1.) The
factor 
 is constant with respect to l but may depend on ρ. This question will be discussed
later on. (The problem is closely related to the study of analytic properties of the scattering
amplitude.) It follows that for the Coulomb potential one can put 
(ρ) = 1.

Thus, the S-matrix on the energy shell (i.e. between two states of the same energy) is
given by

〈l′m′|S|lm〉 = δm′mδl′lSl .

In other words

〈E′l′m′|S|Elm〉 = δm′mδl′lδ(E
′ − E)Sl. (28)

Once the S-matrix has been obtained in the angular-momentum representation we may
transform it to one defined in the momentum representation. Taking into account that the
transformation function is given by [23]

〈p|Elm〉 = (p)−
1
2 δ(Ep − E)Ym

l (n), Ep = p2

2
, n = p/p (29)

where Ym
l are the spherical harmonics, we find

〈p′|S|p〉 = 1

4πp
δ(Ep′ − Ep)

∞∑
l=0

(2l + 1)SlPl(n · n′)

= 2iρ−1

πp
δ(E′ − E)

�(1 + iρ)

�(−iρ)
(1 − n · n′)−1−iρ. (30)

For the scattering amplitude f (Ep, θ) defined by

〈p′|S − 1|p〉 = i

2π
δ(Ep′ − Ep)f (Ep, θ) (31)

this gives

f (Ep, θ) = 1

2ip

�(1 + iρ)

�(−iρ)

1

sin2 θ
2

exp

[
−iρ ln

(
sin2 θ

2

)]
, θ 
= 0 (32)

with ρ = α/p and cos θ = n · n′.
The result concerning the scattering amplitude can also be obtained by means of the

following arguments. Let L2(S
2) denote the Hilbert space of square-integrable functions

φ(n), n ∈ S2, on the two-dimensional sphere S2. The representation (ρ, 0) of SL(2, C) can
be realized on L2(S

2) [24]

(U(g)φ)(n) = (ω)−1+σ φ(ng) (33)

where σ = iρ, while ω, ng are defined from

g−1ζ = ωζg (34)
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where ζ ≡ (n, 1) and ζg ≡ (ng, 1) are null vectors of the Minkowski space R3.1. (For the
explicit expression of U(g), see appendix A.) In this realization the operator S is defined as

(Sφ)(n) =
∫

K(n, n′)φ(n′) dn′ (35)

where dn is the invariant measure on S2. Thus, equation (1) will serve to fix the dependence
of the kernel K(n, n′) on n and n′. Equality (1) implies that

(SU(g)φ)(n) = (Ũ(g)Sφ)(n). (36)

Hence, the kernel K is constrained to satisfy

K(ng, n′
g) = (ω)1+σ (ω′)1+σK(n, n′). (37)

In deriving equation (37) we have used the relation

dng = (ω)−2 dn. (38)

The kernel K is, up to a constant, uniquely determined from (37) and is given by

K(n, n′) = c(1 − n · n′)−1−σ . (39)

The verification of equation (39) is based on the relation

(1 − ng · n′
g) = (ω)−1(ω′)−1(1 − n · n′) (40)

which is obviously a consequence of the relation

[g−1ζ, g−1ζ ′] = [ζ, ζ ′]

where [ζ, ζ ′] ≡ ζ1ζ
′
1 + ζ2ζ

′
2 + ζ3ζ

′
3 − ζ4ζ

′
4 is the Minkowskian scalar product.

Hence, the improper matrix elements 〈E′n′|S|En〉 are given by

〈E′n′|S|En〉 = cδ(E′ − E)(1 − n · n′)−1−σ . (41)

The coefficient c is determined to within a phase factor by the unitarity condition∫
〈E′′n′′|S|En〉〈E′n′|S|En〉 dE dn = δ(E′′ − E′)δ(n′′−n′)

which gives

|c|2 = |σ |2
4π2

(the bar denotes complex conjugate).
In order to fix the phase of c (or, equivalently, 
), we need to know the analytic properties

of the S-matrix. It follows from (35) that the operator S is well defined and analytic in σ for
Re σ < 0. To see this, one can compute the S-matrix in the angular-momentum representation.
From (35) we have (see appendix B)

〈l′m′|S|lm〉 = πcδm′mδl′l2
1−σ �(−σ)

�(1 + σ)

�(1 + σ + l)

�(1 − σ + l)
, Re σ < 0.

However, the integral (35) can be continued analytically in σ to give a meromorphic function
defined in the entire complex plane σ . To this end, we put

c(σ ) = 2σ−1

π

�(1 + σ)

�(−σ)
.

Observe that for an attractive Coulomb potential (α < 0) it produces poles which correspond
to bound states. Moreover, with this factor the operator S becomes unitary for σ = iρ.
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Finally, taking into account that |p〉 = (p)−1/2|En〉, with E = p2/2, n = p/p, we find
that

〈p′|S|p〉 = 2iρ−1

πp
δ(E′ − E)

�(1 + iρ)

�(−iρ)
(1 − n · n′)−1−iρ. (42)

In conclusion, we note that an interrelation between the coordinate realization and
realization (33) of representation (ρ, 0) is given by

F(r) =
∫

κ(r, n)φ(n) dn (43)

with

κ(r, n) = exp(iαr/ρ)1F1

[
1 + iρ; 1;− iα

ρ
(r − r · n)

]
(44)

where 1F1 is a confluent hypergeometric function [25]. The action of generators (11) of
SL(2, C) on the function F(r) induces via (43) a corresponding action of SL(2, C) on φ(n)

given by (A10).

3. The Coulomb scattering with spin

It is natural to extend the ordinary Coulomb problem to the Coulomb problem with spin
thereby extending the most degenerate representation of the sl(2, C) algebra to a non-
degenerate one. Such a generalization was recently discussed by Levay and Amos [18].

The generalization of algebra (13) which incorporates a spin operator S is given by [18]

J = r × p + S (45)

A′ = 1
2 (D × J − J × D) + αr̂ (46)

where

D = p +
1

r2
(S × r) (47)

One may verify that the operators J and A′ satisfy the commutation relations

[Ji, Jj ] = iεijkJk, [Ji, A
′
j ] = iεijkA

′
k, [A′

i , A
′
j ] = −iεijkJk(2H ′). (48)

Here H ′ is the modified Coulomb Hamiltonian

H ′ = 1
2 D2 +

α

r
+

1

2r2
� (49)

= −
(

∂

∂r
+

1

r

)2

+
1

2r2
J2 +

α

r
(50)

where � = (S · r̂). The Hamiltonian H ′ commutes with J and A′

[H ′, J] = [H ′, A′] = 0. (51)

Hence the operators J and A′ define conserved quantities. Moreover, the restriction J and A′

to the eigenspace of H ′ corresponding to the eigenvalue p2/2 (p > 0) will lead to the Lie
algebra (16) with

N = 1

p
A′.
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If we compute the Casimir operators for this realization of sl(2, C), they become a function
of �

C1 = �2 −
(

α

p

)2

− 1, C2 = α

p
�. (52)

We have therefore a reducible representation of sl(2, C) acting in the eigenspace of H ′.
We can express the representation of sl(2, C) generated by (45) and (46) as a direct sum

of UIRs of the principal series. Indeed, since � is a scalar operator, it commutes with each
component of the total angular momentum J. Consequently,

[H ′,�] = 0.

This means that we can decompose the carrier space into eigenspaces of the operator � and
that the eigenspace with a definite value for � will carry a single UIR of the principal series
of sl(2, C) with

ρ = α

p
, ν = λ. (53)

Here λ is the eigenvalue of � which takes the values λ = −s, . . . , s, where s is the spin of
the particle. Since � is the component of the spin in the direction of motion of the particle
one can interpret the eigenvalue λ as a helicity.

Thus for every pair of numbers p, s we obtain a 2s + 1 irreducible representation of the
sl(2, C) algebra. This is due to the spin term in (45). (In the scalar case we have only one
irreducible representation of sl(2, C).)

In appendix B, we calculate the S-matrix in the angular-momentum basis. As a result, we
have

〈E′λ′j ′m′|S|Eλjm〉 = δ(E′ − E)δλ′,−λδj ′j δm′mSj (54)

where

Sj = �(1 + j + iρ)

�(1 + j − iρ)
(55)

Hence, the scattering amplitude for the case that the initial momentum is along the z-axis has
the form [23]

fλ′λ(E, θ, ϕ) = δλ′,−λ

1

4πp

∞∑
j=|λ|

(2j + 1)(Sj − 1)D
j

λ,−λ(ϕ, θ,−ϕ) (56)

where (θ, ϕ) specify the direction of the final momentum and Dj is the rotation matrix as
defined in [26]

D
j

mm′(ϕ, θ, ϕ′) = e−i(mϕ+m′ϕ′)d
j

mm′(θ).

Comparing equations (56) and (B26) we obtain

fλ′λ(E, θ, ϕ) = δλ′,−λ

1

2ip

�(1 + |λ| + iρ)

�(|λ| − iρ)

1

sin2 θ
2

exp

[
−iρ ln

(
sin2 θ

2

)
+ 2iλϕ + iπ(|λ| + λ)

]
(57)

where ρ = α/p. Hence, the unpolarized cross section (i.e. the cross section obtained by
averaging over the initial helicities and summing over the final helicities) is found to be

dσ

d�
= α2

16E2 sin4 θ
2

[
1 +

2

3
s(s + 1)

E

α2

]
. (58)

This result coincides with that [18] obtained by Zwanziger’s method. Finally, we note that
result (57) can also be obtained from (B34) by arguments very similar to those used in arriving
at (42). We shall discuss this procedure for the dyon–dyon scattering.
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4. Dyon–dyon scattering

In this section we study the scattering problem of two particles carrying both electric and
magnetic charge (dyons). According to Zwanziger [19] the relative motion of such a system
is governed by the Hamiltonian

H ′′ = 1

2
(p − µD)2 − α

r
+

µ2

2r2
(59)

with a vector potential D(r) given by

D(r) = (m · r)r × m
r[r2 − (r · m)2]

(60)

where the unit vector m determines the direction of the string propagated from −∞ to ∞ and

α = −(e1e2 + g1g2)/4π, µ = (e1g2 − g1e2)/4π (61)

where ei and gi are the electric and magnetic charges.
Due to the rotational symmetry of the problem, we have a conserved quantity, a total

angular momentum, which is given by

J = r × (p − µD)2 − µr̂. (62)

There is further a conserved vector analogous to the Runge–Lenz vector of the Coulomb
problem

A′′ = 1
2 [(p − µD) × J − J × (p − µD)] − αr̂. (63)

So that

[J,H ′′] = 0, [A′′,H ′′] = 0. (64)

(Observe that operators (62) and (63) reduce to those of the hydrogen atom, in the special
case µ = 0.) Moreover, we have

[Ji, Jj ] = iεijkJk [Ji, A
′′
j ] = iεijkA

′′
k

[A′′
i , A

′′
j ] = −iεijkJk(2H ′′) J · A′′ = αµ

A′′2 − (α)2 = 2H ′′(J2 − µ2 + 1).

(65)

As in the case of the Coulomb problem, we consider the subspace corresponding to the definite
value p2/2, (p > 0) of H ′′ and define a new operator by

N = 1

(2H ′′)1/2
A′′ (66)

and in this way J and N satisfy (16). For the Casimir operators C1 and C2, we have

C1 = µ2 −
(

α

p

)2

− 1, C2 = α

p
µ. (67)

We have therefore the principal series representation of sl(2, C) with

ρ = α/p, ν = µ (68)

acting in the eigenspace of H ′′.
After this is done, it is almost straightforward to get an explicit form of the scattering

amplitude for the dyon–dyon scattering. Taking into account that

〈p′|S|p〉 = 1

4πp
δ(E′ − E)〈n′|S|n〉
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with n = p/p and n′ = p′/p′, p′ = p, we find from equation (B34)

〈p′|S|p〉 = i2(|µ|−µ)δ(E′ − E)
2−1+i α

p

πp

�
(
1 + |µ| + i α

p

)
�

(|µ| − i α
p

) (1 − n · n′)−1−i α
p e2iµβ (69)

where β ≡ β(n, n′) is given by

e−iβ(n,n′) = sin θ
2 cos θ ′

2 e−iϕ − sin θ ′
2 cos θ

2 e−iϕ′∣∣sin θ
2 cos θ ′

2 e−iϕ − sin θ ′
2 cos θ

2 e−iϕ′ ∣∣ . (70)

For the scattering amplitude f (E; n, n′) defined by

〈p′|S − 1|p〉 = i

2π
δ(E′ − E)f (E; n, n′)

this gives

f (E; n, n′) = i2(|µ|−µ) 2i α
p

ip

�
(
1 + |µ| + i α

p

)
�

(|µ| − i α
p

) (1 − n · n′)−1−i α
p e2iµβ(n,n′) (71)

where n′ 
= n. (Observe that the scattering amplitude (71) reduces to those of the hydrogen
atom, in the case µ = 0.) If we choose the initial momentum p along the z-axis (and then use
θ, ϕ for the direction of p′), we obtain

f (E, θ, ϕ) = i2(|µ|+µ)

2ip

�
(
1 + |µ| + i α

p

)
�

(|µ| − i α
p

) (
sin2 θ

2

)−1−i α
p

exp(2iµϕ), θ 
= 0 (72)

(cf equation (57)). It is also worth noting that

f (E, θ, ϕ) = 1

4πp

∞∑
j=|µ|

(2j + 1)
�(1 + j + iρ)

�(1 + j − iρ)
D

j
µ,−µ(ϕ, θ,−ϕ), θ 
= 0 (73)

and

dσ

d�
= |f (E, θ, ϕ)|2 = α2 + 2µE

4E2(1 − cos θ)2
. (74)

5. Conclusion

In this paper we explore the implications of Lorentz invariance for non-relativistic scattering
processes whose Hamiltonians are related to the Casimir operators of SL(2, C). It has been
shown that the scattering problem can be completely solved within the framework of symmetry
algebra, without explicit knowledge of a potential. Although in this paper we consider only
scattering processes related to SL(2, C), the intertwining operator seems to be the most
adequate language to derive the scattering amplitude for systems with underlying dynamical
groups.

Appendix A. The principal most degenerate series of so(3, 1) algebra

To be able to use equation (2) in the computation of the S matrix, we have to know an abstract
realization of the principal series of so(3, 1) � sl(2, C) algebra. For this reason we give here a
realization of the principal series representation of so(3, 1) algebra in the angular-momentum
basis. For the sake of simplicity, we shall restrict ourselves to the most degenerate series
representation.
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We can obtain the most degenerate series representation of so(3, 1) algebra from the
corresponding representation of the SO(3, 1) group. To do this, let us consider the most
degenerate principal series representation of the SO(3, 1) group realized in the Hilbert space
L2(S

2) of square-integrable function φ(n), n ∈ S2, on the two-dimensional unit sphere S2.
The representation operator U(g), g ∈ SO(3, 1) is defined by [24]

U(g)φ(n) =
[

3∑
k=1

(g−1)4k nk + (g−1)44

]−1+σ

φ(ng) (A1)

where σ = iρ and

(ng)i =
∑3

k=1(g
−1)ik nk + (g−1)i4∑3

k=1(g
−1)4k nk + (g−1)44

, i = 1, 2, 3 (A2)

with

n1 = sin θ cos ϕ, n2 = sin θ sin ϕ, n3 = cos θ. (A3)

Let us denote {gij (t)}, i < j, i, j = 1, 2, 3, 4 the one-parameter subgroups of SO(3, 1)

consisting of rotations or pseudorotations in xi − xj planes, that is, of transformations of
the form

x ′
k = xk, k 
= i, j, x ′

i = xi cos t − xj sin t, x ′
j = xi sin t + xj cos t (A4)

or

x ′
k = xk, k 
= i, j, x ′

i = xi cosh t + xj sinh t, x ′
j = xi sinh t + xj cosh t.

(A5)

The (Hermitian) infinitesimal operators Iij of the representation U(g) corresponding to the
one-parameter subgroups {gij (t)} are defined by

Iij = −i
d

dt
U(gij (t))

∣∣∣∣
t=0

. (A6)

They are related to Li,Ki as follows:

L = (L1, L2, L3) = (I23, I31, I12) (A7)

K = (K1,K2,K3) = (I14, I24, I34). (A8)

Instead of Li,Ni it is more convenient to use their linear combinations

L± = L1 ± iL2, K± = K1 ± iK2. (A9)

Then we have

L3 = 1

i

∂

∂ϕ

L± = e±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
K3 = i(−1 + σ) cos θ − i sin θ

∂

∂θ

K± = ie±iϕ

[
(−1 + σ) cos θ + cos θ

∂

∂θ
± i

sin θ

∂

∂ϕ

]
.

(A10)

We take as a basis of the carrier space the eigenvector |lm〉 of L2 and L3

L2|lm〉 = l(l + 1)|lm〉 L3|lm〉 = m|lm〉.
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It is not difficult to see that |lm〉 = Ym
l , where Ym

l are the well-known spherical harmonics.
Using the standard method, namely, applying the left-hand side and right-hand side of (A10)
to the basis vectors, gives

L3|lm〉 = m|lm〉
L±|lm〉 = [(l ∓ m)(l ± m + 1)]1/2|l, m ± 1〉
K3|lm〉 = i(−1 + σ − l)al+1,m|l + 1,m〉 + i(σ + l)al,m|l − 1,m〉
K±|lm〉 = ±i(1 − σ + l)bl+1,±m+1|l + 1,m ± 1〉 ± i(σ + l)bl,∓m|l − 1,m ± 1〉

where

al,m =
√

(l + m)(l − m)

(2l + 1)(2l − 1)
, bl,m =

√
(l + m)(l + m − 1)

(2l + 1)(2l − 1)
.

Appendix B. Evaluation of the S-matrix in an angular-momentum basis

In this section we calculate the S-matrices for scattering systems governed by principal non-
degenerate series of representations of SL(2, C). We find it expedient to use, for this purpose,
equation (1). By realizing the principal series of SL(2, C) on suitable Hilbert spaces of some
functions we can derive from equation (1) the functional relations for the kernel of S which
allow us to obtain an integral representation for the S-matrix. Thus, we can calculate the
S-matrix in a straightforward manner from its integral formula.

One possibility of realizing the principal series of representations of SL(2, C) is on the
Hilbert space of square-integrable functions f (z) of complex variables z. In this realization
the representations of SL(2, C) are given by [22]

(U(g)f )(z) = α(zg)f (zg) (B1)

where α(g) = |g22|−2ν+2σ−2(g22)
2ν, σ = iρ and zg is defined from

ζg = kζg (B2)

where

ζ =
(

1 0
z 1

)
, k =

(
a−1 b

0 a

)
, ζg =

(
1 0
zg 1

)
. (B3)

We may rewrite equation (B1) in the form

(U(g)f )(z) = |g12z + g22|−2ν+2σ−2(g12z + g22)
2νf

(
g11z + g21

g12z + g22

)
. (B4)

The operator S is defined as

(Sf )(z) =
∫

Q(z,w)f (w) dw. (B5)

Thus, equation (1) will serve to fix the dependence of the kernel Q(z,w) on z and w. Equality
(1) implies that

(SU(g)f )(z) = (Ũ(g)Sf )(z). (B6)

So, the kernel Q is constrained to satisfy the functional equation∫
Q(z,w)|g12w + g22|−2ν+2σ−2(g12w + g22)

2νf

(
g11w + g21

g12w + g22

)
dw

= |g12z + g22|2ν−2σ−2(g12z + g22)
−2ν

∫
Q

(
g11z + g21

g12z + g22
, w′

)
f (w′) dw′
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Making the substitution

z = g22z
′ − g21

−g12z′ + g11
, w = g22w

′ − g21

−g12w′ + g11
(B7)

and taking into account the formula

dw = |−g12w
′ + g11|−4 dw′ (B8)

we get the condition

Q

(
g22z − g21

−g12z + g11
,

g22w − g21

−g12w + g11

)
= |−g12z + g11|−2ν+2σ−2(−g12z + g11)

2ν

× |−g12z + g11|−2ν+2σ−2(−g12z + g11)
2νQ(z,w). (B9)

In particular, choosing

g =
(

1 0
a 1

)
(B10)

in equation (B9), we obtain

Q(z − a,w − a) = Q(z,w). (B11)

Hence, the kernel Q(z,w) is a function of z − w only

Q(z,w) = Q′(z − w) (B12)

where Q′(z) ≡ Q(z, 0). Taking into account this expression in (B9) we get

Q′
(

z

g11(−g12z + g11)

)
= |−g12z + g11|−2ν+2σ−2(−g12z + g11)

2ν |g11|−2ν+2σ−2(g11)
2νQ′(z)

(B13)

where we have put w = 0. Choosing

g =
(

a 0
0 a−1

)
(B14)

in equation (B13), we see the Q′(z) is an homogeneous function of z:

Q′
( z

a2

)
= |a|−4ν+4σ+4a4νQ′(z). (B15)

Then from (B15) it follows that

Q′(z) = η|z|2ν−2σ−2(z)−2ν (B16)

where η = Q′(1) is an arbitrary constant. Hence

Q(z,w) = c|z − w|2ν−2σ−2(z − w)−2ν . (B17)

We mention that the operators S satisfying equation (1) are called intertwining operators
between representations U and Ũ . These operators were first used to study the irreducibility
of the principal series and the unitarity of the analytically continued representations (the
complementary series) of SL(2, C) [27]. Moreover, there is a general expression of the
intertwining operators for induced representations of semisimple Lie groups [28]. Therefore,
the above result can also be extracted from that expression. It is also worth noting that the
integral in equation (B5) actually converges only for Re σ < 0. (To see this, one can compute
the S-matrix.) However, this integral may be continued analytically in σ to give meromorphic
functions defined in the entire complex plane (see below).
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For our purpose, however, it is more convenient to work in the compact picture [22],
where the principal series of SL(2, C) is realized on the Hilbert space of square-integrable
functions φ on the group SU(2) which obeys the condition

φ(γ u) = eiνϕφ(u) (B18)

where u ∈ SU(2) and

γ =
(

exp(−iϕ/2) 0
0 exp(iϕ/2).

)
(B19)

In this realization the operators U(g) are given by

U(g)φ(u) = α(ug)

α(ug)
φ(ug) (B20)

where ug is defined from

ug = kug. (B21)

The connection between these two realizations is given by

f (z) = 1√
π

α−1(u)φ(u), z = u21

u22
. (B22)

Therefore, when the carries space of the representations is L2
ν(SU(2)) the operator S has the

form

(Sφ)(u) =
∫

R(u, u′)φ(u′) du′ (B23)

with the kernel given by

R(u, u′) = πη|(uu′−1)21|2ν−2σ−2[(uu′−1)21]−2ν . (B24)

Taking into account the fact that the basis states |ρν; jm〉 (see equation (19)) in this
realization differ from the matrix elements t

j
νm [24] of the UIR of SU(2) only by the factor√

2j + 1, we arrive at the integral formula for the S-matrix

〈j ′m′|S|jm〉 =
√

(2j + 1)(2j ′ + 1)

∫
R(u, u′)tjνm(u′)tj−νm′(u) du du′. (B25)

If we introduce u′u−1 instead of u′ as a new variable we find that

〈j ′m′|S|jm〉 = δjj ′δmm′

∫
R′(u)t

j
ν,−ν(u) du (B26)

with

R′(u) = πη|u21|2ν−2σ−2[u21]−2ν . (B27)

On expressing the matrix u through the Euler angles ψ, θ, ϕ

u(ψ, θ, ϕ) =
(

eiψ/2

e−iψ/2

)(
cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

)(
eiϕ/2

e−iϕ/2

)
(B28)

with

du = 1

16π2
sin θ dθ dψ dϕ, 0 � ϕ < 2π, 0 � θ < π, 0 � ψ < 4π (B29)

and taking into account that [24]

t
j

mm′(u) = e−i(mψ+m′ϕ)P
j

mm′(cos θ) (B30)
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we have (see equation (7.512) (2) of [29])

〈j ′m′|S|jm〉 = πηδjj ′δmm′
�(1 + j + σ)

�(1 + j − σ)

{
�(ν−σ)

�(1+ν+σ)
, ν > 0

(−1)2ν �(−ν−σ)

�(1−ν+σ)
, ν < 0

(B31)

for Re σ < 0. The matrix elements for Re σ � 0 are obtained by analytical continuation. For
the scattering systems under consideration we put

η = i2(|ν|−ν)

π

�(1 + |ν| + σ)

�(|ν| − σ)
. (B32)

(Observe that η contains the bound-state poles of the amplitude.) With this factor the operator
S becomes unitary for σ = iρ. This fact can also be visualized from equation (B31)

〈j ′m′|S|jm〉 = δjj ′δmm′
�(1 + j + iρ)

�(1 + j − iρ)
(B33)

Due to equation (B18), the principal non-degenerate series of representations of
SL(2, C) can also be realized on the Hilbert space of functions φ(n) ≡ φ(u(ϕ, θ,−ϕ))

on SU(2)/U(1) � S2. In this realization

(Sφ)(n) = c

∫
(1 − n · n′)−1−iρ e2iνβφ(n′) dn′ (B34)

where β ≡ β(n, n′) is given by

e−iβ(n,n′) = sin θ
2 cos θ ′

2 e−iϕ − sin θ ′
2 cos θ

2 e−iϕ′∣∣sin θ
2 cos θ ′

2 e−iϕ − sin θ ′
2 cos θ

2 e−iϕ′ ∣∣
and

c = i2(|ν|−ν) 2iρ−1

π

�(1 + |ν| + iρ)

�(|ν| − iρ)
.

At the end, we mention the relation between P
j
mn(cos θ) [24] and d

j
mn(cos θ) [26]

P j
mn(cos θ) = im−ndj

mn(cos θ). (B35)
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